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This paper provides a temporal model for the propagation of transient ultrasonic waves in a layered isotropic
porous material having a rigid frame. A temporal equivalent fluid model is considered, in which the acoustic
wave propagates only in the fluid saturating the material. In this model, the inertial effects are described by the
layered tortuosity and the viscous and thermal losses of the medium are described by two layered susceptibility
kernels which depend on the viscous and thermal characteristic lengths. The medium is one dimensional and its
physical parameters �porosity, tortuosity, and characteristics lengths� are depth dependent. A generalized hy-
perbolic fractional equation for transient sound wave propagation in layered material is established.
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I. INTRODUCTION

The ultrasonic characterization of porous materials satu-
rated by air �1,2� such as plastic foams, fibrous, or granular
materials is of great interest for a wide range of industrial
applications. These materials are frequently used in the au-
tomotive and aeronautics industries and in the building trade.
When a sound wave travels in an air-saturated porous me-
dium, the dispersive effects are due to the frequency depen-
dence of the complex functions �1–4� of the physical param-
eters of the medium, hereafter referred to as the generalized
susceptibilities �5,6�, which describe the fluid-structure inter-
actions. The analysis of the propagation of transient waves in
such media encounters two different problems arising from
direct and inverse scattering. The direct scattering problem
�7–12� is that of determining the scattered fields when the
incident wave is known. In most cases, the determination of
medium parameters is done in the frequency domain �13,14�.

This time-domain model is an alternative to the classical
frequency-domain approach. It is an advantage of the time-
domain method �7,8,15–17� that the results are immediate
and direct. The attraction of a time-domain based approach is
that analysis is naturally bounded by the finite duration of
ultrasonic pressures and it is consequently the most appro-
priate approach for transient signals. However, for wave
propagation generated by time harmonic incident waves and
sources �monochromatic waves�, the frequency analysis is
more appropriate �1,13,14�. A time-domain approach differs
from frequency analysis in that the susceptibility functions
describing viscous and thermal effects are convolution op-
erators acting on velocity and pressure, and therefore a dif-
ferent algebraic formalism must be applied to solve the wave
equation. The time-domain response of the material is de-
scribed by an instantaneous response and a susceptibility ker-
nel responsible for memory effects �7–12�.

The acoustic propagation in homogeneous porous materi-
als has been well studied, different methods and techniques
were developed in frequency �1–3,13,14� and time domains
�7–11,20–22� for the acoustic characterization. All these
techniques are valid only for homogeneous porous materials,
in which their physical parameters are constants inside the
porous medium. However, in the general case, the porous
media are layered �23,24� and their physical properties are
locally constants, i.e., they are constant in the elementary
volume of homogenization �23�, but they may vary point to
point in the porous medium. For this general case, a good
understanding of the acoustic propagation is necessary for
developing new methods of characterization.

This work follows the investigation previously done in
Ref. �7�, in which a time-domain approach was developed.
Here, a general expression for the equation of wave propa-
gation in a layered porous medium is derived.

The outline of this paper is as follows. Section II shows
the equivalent fluid model; the relaxation functions describ-
ing the inertial, viscous, and thermal interactions between
fluid and structure are recalled. In this section, the connec-
tion between the fractional derivatives and wave propagation
in rigid homogeneous porous media in the high frequency
range is established. Finally, in Sec. III the analytical deriva-
tion of the general propagation equation is given in time
domain. The different terms of this equation are discussed.

II. THE EQUIVALENT FLUID MODEL

In air saturated porous media, the structure is assumed to
be motionless: the acoustic waves travel only in the fluid
filling the pores. The wave propagation is described by the
equivalent fluid model which is a particular case of Biot’s
theory �18�. In this model, the interactions between the fluid
and the structure are taken into account in two frequency

PHYSICAL REVIEW E 77, 016601 �2008�

1539-3755/2008/77�1�/016601�5� ©2008 The American Physical Society016601-1

http://dx.doi.org/10.1103/PhysRevE.77.016601


dependent response factors which are the generalized suscep-
tibilities: the dynamic tortuosity of the medium ���� �3� and
the dynamic compressibility of the air included in the me-
dium ���� �1,4�. These two response factors are complex
functions which heavily depend on the frequency f =� /2�.
These functions represent the deviation from the behavior of
the fluid in the free space as the frequency increases. Their
theoretical expressions are given by Johnson et al. �4�, and
Allard �1� and Lafarge et al. �4�:

���� = ���1 +
��

i���	
�1 + i

4��
2 
	�

�2�2�2 � , �1�

���� = � − �� − 1��1 +

�

i�	k0�Pr

�1 + i
4k0�

2	�Pr


�2��2 �−1

,
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where i2=−1, � represents the adiabatic constant, Pr is the
Prandtl number, �� is the tortuosity, � is the flow resistivity,
k0� is the thermal permeability �4�, � and �� are the viscous
and thermal characteristic lengths �1,3,4�, 
 is the fluid vis-
cosity, � is the porosity, and 	 is the fluid density. This
model was initially developed by Johnson �3�, and completed
by Allard �1� by adding the description of thermal effects.
Later on, Lafarge �4� introduced the parameter k0� which de-
scribes the additional damping of sound waves due to the
thermal exchanges between fluid and structure at the surface
of the pores. Generally the ration between �� and � is be-
tween 2 and 3. For the porous materials having cylindrical
pores, the characteristic lengths are equal to the radius of the
pores. For the most resistive porous materials �=10 m
�sandstone, cancellous bone�, and for the less resistive po-
rous materials �=400 m �plastic foam, glass wool�.

The functions ���� and ���� express the viscous and
thermal exchanges between the air and the structure which
are responsible for the sound damping in acoustic materials.
These exchanges are due on the one hand to the fluid-
structure relative motion and on the other hand to the air
compressions–dilatations produced by the wave motion. The
part of the fluid affected by these exchanges can be estimated
by the ratio of a microscopic characteristic length of the me-
dia, as, for example, the sizes of the pores, to the viscous and
thermal skin depth thickness �= �2
 /�	�1/2 and ��
= �2
 /�	Pr�1/2. For the viscous effects this domain corre-
sponds to the region of the fluid in which the velocity distri-
bution is perturbed by the frictional forces at the interface
between the viscous fluid and the motionless structure. For
the thermal effects, it is the fluid volume affected by the heat
exchanges between the two phases of the porous medium,
the solid skeleton being seen as a heat sink. At high frequen-
cies, the viscous and thermal skin thicknesses are very small
compared to the radius of the pore r. The viscous and ther-
mal effects are concentrated in a small volume near the sur-
face of the frame � /r�1 and �� /r�1. In this case, the ex-
pressions of the dynamic tortuosity and compressibility are
given by the relations

���� = ���1 +
2

�
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i�	
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2�� − 1�
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i�Pr	
�1/2
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In the time domain, these factors are operators and their
asymptotic expressions are given by Ref. �7� as

��t� = �����t� +
2

�
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�	
�1/2

t−1/2	 , �5�

��t� = ���t� +
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�Pr	
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In each of these equations the first term in the right-hand side
is the instantaneous response of the medium ���t� is the
Dirac function� while the second term is the memory func-
tion. In electromagnetism, the instantaneous response is
called optical response. It describes all the processes which
cannot be resolved by the signal. The time convolution of
t−1/2 with a function is interpreted as a fractional derivative
operator according to the definition �for order �� given by
Samko and colleagues �19�,

D��x�t�� =
1

��− ��
0

t

�t − u�−�−1x�u�du , �7�

where ��x� is the Gamma function.
In this framework, the basic equations of the acoustic

waves propagation along the ox axis are

	�̃�t� �
�w

�t
= − �

�p

�x
, �8�

��̃�t�
Ka

�
�p

�t
= −

�w

�x
. �9�

The first equation is the Euler equation, the second one is the
constitutive equation. Ka is the bulk modulus of air, p is the
acoustic pressure, and w=�v where v is the particle velocity,
� denotes the shorthand notation for the time convolution

�f � g��t� = 

0

t

f�t − t��g�t��dt�. �10�

The wave equation is deduced from these equations:

�2p

�x2 − A
�2p

�t2 − B

0

t �2p/�t�2

�t − t�
dt� − C

�p

�t
= 0, �11�

where coefficients A, B, and C are constants given by
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Ka
, B =

2��

Ka

�	


�
� 1

�
+

� − 1
�Pr��

� ,

C =
4���� − 1�

Ka����Pr

. �12�

The first coefficient is related to the velocity c=1 /�	�� /Ka
of the wave in the air included in the porous material. The
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other coefficients are essentially dependent of the character-
istic lengths � and �� and express the viscous and thermal
interactions between the fluid and the structure, respectively.
The coefficient B governs the spreading of the signal, while
C is responsible of the attenuation of the wave. This propa-
gation equation has been solved analytically in Ref. �9�. The
direct �10–12� and inverse �20–22� scattering problem for a
slab of porous material has been studied given a good esti-
mation of the physical parameters �tortuosity ��, porosity �,
and characteristic length � and ���.

III. GENERALIZED PROPAGATION EQUATION IN
LAYERED POROUS MATERIALS

Consider the propagation of transient acoustic waves in a
layered porous material having rigid frame. In this material,
the acoustical parameters �porosity, tortuosity, viscous, and
thermal characteristic lengths� depend on the thickness. For a
wave propagating along the x axis, the fluid-structure inter-
actions are described by the layered relaxation operators
��x , t� and ��x , t� given by

��x,t� = ���x����t� +
2

��x�
� 


�	
�1/2

t−1/2	 , �13�

��x,t� = ���t� +
2�� − 1�

���x�
� 


�Pr	
�1/2

t−1/2	 . �14�

In these equations, the tortuosity ���x� and viscous and ther-
mal characteristic lengths ��x� and ���x� depend on the
thickness of the porous material for describing the layered
losses in the material.

In this framework, the basic equations �23,25� for our
model can be written as

	��x,t� �
�w�x,t�

�t
= − ��x�

�p�x,t�
�x

, �15�

��x�
Ka

��x,t� �
�p�x,t�

�t
= −

�w�x,t�
�x

, �16�

where ��x� represents the variation of porosity with depth. In
the next section, the generalized propagation equation in lay-
ered porous material having an acoustical parameter varying
with depth is derived. The derivation of the generalized wave
equation in layered porous material is important for comput-
ing the propagation of an acoustic pulse inside the medium,
and for solving the direct and inverse scattering problems.

Let us consider the Euler equation �15� and the constitu-
tive one �16� in an infinite layered porous material. By put-

ting a�x�= 2
��x�

� 

	� and b�x�=

2��−1�

���x�
� 


Pr	� , we obtain

	���x����t� +
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�t

� �
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�p�x,t�
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��x�
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b�x�
�t

� �
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�t
= −

�w�x,t�
�x

. �18�

We note P�x ,z�, the Laplace transform of p�x , t�, defined by

P�x,z� = L�p�x,t�� = 

0

�

exp�− zt�p�x,t�dt . �19�

The Laplace transform of Eqs. �17� and �18� yields

	���x��1 + a�x���

z
�zW�x,z� = − ��x�

�P�x,z�
�x

, �20�

��x�
Ka

�1 + b�x���

z
�zP�x,z� = −

�W

�x
�x,z� , �21�

where W�x ,z� is the Laplace transform of w�x , t�.
Using Eqs. �20� and �21� �see the Appendix�, we obtain

the following equation:

1

c2�x�
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where

	���x�
Ka

=
1

c2�x�
;

	���x�
Ka

�a�x� + b�x�� = B��x�

and
	���x�

Ka
�a�x�b�x� = D��x� .

Using the inverse Laplace transform of Eq. �22� and the ini-
tial conditions �9,12� �p

�t �x ,0�= p�x ,0�=0, we find the gener-
alized propagation equation in time domain,

�2p

�x2 �x,t� −
1

c2�x�
�2p

�t2 �x,t� − B��x�

0

t �2p

�t2 �x,t − ��
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��

− D��x�
�p

�t
�x,t� −

�a�x�
�x

1

c2�x���x�

�

0

x

��y��

0

t �2p

�t2 �y,t − ��
d�

��
+ �b�y�

�p

�t
�y,t��

�dy −
�p

�x
�x,t���x� = 0, �23�

with

��x� =
�

�x
ln

���x�
��x�

.

Equation �23� is the generalized propagation equation for
lossy layered porous material. This equation is very impor-
tant for treating the direct and inverse scattering problems in
layered porous materials in time domain. It is easy to find the
special case of homogeneous porous medium, i.e., when
���x�, ��x�, ��x�, and ���x� become constants �independent
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of x�, we find B��x�=B, D��x�=C, ��x�=�a�x� /�x=0. In this
case, the generalized wave propagation �Eq. �23�� is reduced
to the propagation equation in homogeneous material �Eq.
�11��.

The first and second term in the propagation equation
�23�, �2p

�x2 �x , t�− 1
c2�x�

�2p
�t2 �x , t�, describe the propagation �time

translation� via the front wave velocity c�x�. The layered
tortuosity ���x� appears as the refractive index of the me-
dium which changes the wave velocity from c0=�Ka /	 in
free space to c�x�=c0 /����x� in the porous medium. From
this equation, it can be seen that only the inertial effects
�represented by the spatial profile of the tortuosity ���x��
modify the front wave velocity.

The third term in the propagation equation �23�,
B��x��0

t �2p
�t2 �x , t−�� d�

��
, contains a time fractional derivative of

order 3/2 �see the definition of fractional derivatives in Eq.
�7��. This term is the most important one for describing the
dispersion, memory effects �historical phenomena due to re-
laxations times�, and the acoustic attenuation in porous ma-
terials. These effects are due to losses in the medium mod-
eled by the viscous and thermal exchanges between fluid and
structure, and described by the characteristic lengths ��x�
and ���x�. This term results from the time convolution of the
fractional derivatives operators of tortuosity ��x , t� and com-
pressibility ��x , t�. It is sensitive to the spatial variation of
the tortuosity ���x�. The high frequency components of the
transient signal are the most sensitive to this term �due to the
fractional derivative�.

The fourth term in the propagation equation �23�,
D��x� �p

�t �x , t�, is an attenuating term; it results in the attenu-
ation of the wave without dispersion. This term describes the
acoustic attenuation due to the viscous and thermal interac-
tions between fluid and structure, and to acoustic attenuation
caused by the spatial variation of the tortuosity. The low
frequency components of the transient signal are the most
sensitive to this term.

The final term, ��x� �p
�x �x , t�, describes the attenuation

caused by the spatial variation of the tortuosity and the po-
rosity. In contrast to the other terms, theses two terms are
independent of the relaxations times of the medium and thus
to the frequency component of the acoustic signal �i.e., there
is no temporal derivative�.

The spatial variation of the porosity ��x� appears in the
propagation equation only via the two end terms. We recall
that in the homogeneous case, the propagation equation �Eq.
�11�� is independent of the porosity; this parameter appears
in the response of the homogeneous medium when the
boundary conditions of the problem are introduced �10�.

Finally, the term −
�a�x�

�x
1

c2�x���x��0
x��0

t �2p
�t2 �y , t−�� d�

��

+�b�y� �p
�t �y , t��dy describes the spatial variation of the inho-

mogeneity of the porous medium due to the temporal disper-
sion �viscous and thermal� of the medium.

IV. CONCLUSION

In this paper the generalized wave equation in layered
porous material is established using fractional calculus. The

different terms of the propagation equation show how the
spatial variation of the tortuosity, porosity, and characteristic
length affect the propagation. Future studies will concentrate
on the direct and inverse scattering problems, and methods
and inversion algorithms will be developed to optimize the
acoustic properties of layered porous media.

APPENDIX

By differentiating both sides of Eq. �20� with respect to x,
one finds that

	
����x�

�x
�1 + a�x���

z
�zW�x,z� + 	���x�

�a�x�
�x

���

z
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z
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�W�x,z�
�x

= − ��x�
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�x2 −
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�x

���x�
�x

. �A1�

The first term of Eq. �A1� gives
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�1 + a�x���

z
�zW�x,z�

=
����x�
���x��x

	���x��1 + a�x���

z
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and by taking into account Eq. �20�, we obtain
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�1 + a�x���

z
�zW�x,z�

= −
�P�x,z�

�x
��x�

� ln����x��
�x
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The spatial integration of Eq. �21� from 0 to x yields

W�x,z� = W�0,z� −
1

Ka



0

x

��y��1 + b�y���

z
�zP�y,z�dy .

Assuming the same initial conditions than those given in
Refs. �9,12�, which means that the medium is at rest for t

�0, v�0, t�=
�v�0,t�

�t =0⇒W�0,z�=0, and by multiplying the
two members by z,

zW�x,z� = −
1

Ka



0

x

��y��1 + b�y���

z
�z2P�y,z�dy .

�A3�

Using Eqs. �A1� and �A3�, we obtain

	���x�
�a�x�

�x
��

z
zW�x,z�

= −
	���x�

Ka

�a�x�
�x



0

x

��y����

z
z2P�y,z�

+ �b�y�zP�y,z��dy . �A4�
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By replacing
�W�x,z�

�x by its expression given in Eq. �21� into
Eq. �A1�, we obtain

	���x��1 + a�x���

z
�z

�W�x,z�
�x

= −
	���x���x�

Ka
�1 + a�x���

z
��1 + b�x���

z
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= −
	���x���x�

Ka
�1 + �a�x� + b�x����

z

+
�a�x�b�x�

z
�z2P�x,z� . �A5�

Equation �A1� takes the following form

−
�P�x,z�

�x
��x�

� ln ���x�
�x

−
	���x�

Ka

�a�x�
�x

�

0

x

��y����

z
z2P�y,z� + �b�y�zP�y,z��dy

−
	���x���x�

Ka
�1 + �a�x� + b�x����

z

+
�a�x�b�x�

z
�z2P�x,z�

= − ��x�
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�x2 −
�P�x,z�

�x

���x�
�x

. �A6�

After some changes Eq. �A6� can be written as Eq. �22�.
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